Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity

نویسنده

  • Boris Haspot
چکیده

This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in R with N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity and we aim at stating well-posedness in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon in [7] where u0 ∈ B N p −1 p,∞ with 1 ≤ p < +∞. This improves the analysis of [13], [14] and [2] where u0 is considered belonging to B N p −1 p,1 with 1 ≤ p < 2N . Our result relies on a new a priori estimate for transport equation introduce by Bahouri, Chemin and Danchin in [5] when the velocity u is not considered Lipschitz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local well-posedness results for density-dependent incompressible fluids

This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in R with N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity and we aim at stating well-posedness in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon...

متن کامل

Mathematical Analysis of Models of Non-homogeneous Fluids and of Hyperbolic Equations with Low Regularity Coefficients

The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity coe cients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coe cients satisfy a log-Zygmund continuity condition in time and a logLipschitz continuity condition with respect ...

متن کامل

On the global well-posedness for Euler equations with unbounded vorticity

In this paper, we are interested in the global persistence regularity for the 2D incompressible Euler equations in some function spaces allowing unbounded vorticities. More precisely, we prove the global propagation of the vorticity in some weighted MorreyCampanato spaces and in this framework the velocity field is not necessarily Lipschitz but belongs to the log-Lipschitz class LL, for some α ...

متن کامل

Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...

متن کامل

Strong Well-posedness of a Diffuse Interface Model for a Viscous, Quasi-incompressible Two-phase Flow

We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. In contrast to previous works, we study a model for the general case that the fluids h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013